NASA-CR-192903

(i;w 2 ":Sfj?//

TN ~62-CF

‘ | 158667
. Performance Measurements of a /10

Multiprocessor Sprite Kernel

John é) Hartman and John K. Qusterhout

N93-T2069
(NASA—CR—l‘?Z‘?OB) PERFORMANCE
MEASUREMENTS QF A MULTIP%OCES?DR
SPRITE KERNFL {(Califorma Univ.)
i0 p

unclas

TEFETENED |

19/62 0158669

>
|' l') | I | -
i 'I
ol . u
)
> i
g ()

Y

Wi’ M‘ U IE

June 1990

Computer Science Division (EECS)
University of California
Berkeley, California 94720

.

i

USENIX Summer Conference
June 11-15, 1890
Anaheim, California

Performance

Measurements of a

Multiprocessor
Sprite Kernel

John H. Hartman, John K. Ousterhout -
University of California at Berkeley

ABSTRACT

This report presents performance measurements made of the Sprite operating system
running on a multiprocessor. A variety of micro- and macro-benchmarks were run
while varying the number of processors in the system, and both the elapsed time and
the contention for kernel locks were recorded. A number of interesting conclusions
are drawn from the results. First, the macro-benchmarks show acceptable performance
on systems of up to five processors. Total system throughput increases almost linearly
with the system size. Projections of the lock contention measurements show that the
maximum performance will be reached with about seven processors in the system.
Second, it is often difficult to predict the effect of a benchmark on particular kemnel
Jocks. It was anticipated that different benchmarks would saturate different kemel
monitor locks. Afier running the benchmarks it was found that a single master lock
was the biggest kernel bottleneck, and that one of the micro-benchmarks had saturated
a different lock than the one at which it was targeted. The kemnel locking structure
has become so complex as the system has evolved that it is hard to determine cause
and effect relationships. Third, although the kernel contains many locks, only a few of
them are performance bottlenecks. Performance measurements such as those presented
here allow the relevant parts of the kemel to be redesigned to eliminate the
bottlenecks. Such a redesign is needed to aliow the system to scale gracefully beyond
about seven processors.

1. Introduction

Sprite is a network operating system being
developed at Berkeley [6]). From its inception Sprite
has been designed to run on a multiprocessor. To
avoid performance bottlenecks due to kernel conten-
tion, the kernel is multi-threaded 1o allow more than
one processor 1o execute kemel code at the same
time. Exclusive access to kemel resources is
ensured through the use of locks. There is a limit to
the aumber of processors that can be in the kernel
and doing useful work, however. Once a lock
saturates, additional processors will pot significantly
increase system throughput. The goal of our study
was to determine how well Sprite scales with the
size of s multiprocessor, by running a variety of
benchmarks and measuring both contention for ker-
ne! locks and overall system performance.

The benchmarks were chosen either to stress
particular kernel Jocks or to resemble user work-
Joads seen in the Sprite development environment.
The former were used to measure how well the sys-
tem behaves when locks became saturated, and to
identify locks that arc potential bottlenecks. This

The work described here was supporied in part by the
Defense Advanced Research Projects Agency under
contract N00039-85-R-0269 and in part by the National
Science Foundation under grant ECS-8351961.

USENIX - Summer *90

information can then be used to restructure the ker-
pel to improve its behavior. The latter were used 10
measure the sysiem’s ability to scale while running
realistic workloads, determining both the limit on
system size and the effect of adding another proces-
sof to the system.

The results indicate that contention for the ker-

pel context switch code is the biggest limiting factor
to scaling the system. The lock protecling this code

~ becomes very beavily utilized with only five proces-

sors in the system. Measurements of the realistic
workloads indicate that the Jock will become
saturated with about seven processors in the system.

The rest of the paper is structured as follows.
Section 2 describes the types of locks used in the
Sprite kernel, and Section 3 describes the multipro-
cessor hardware used to oblain the measurements.
The instrumentation added to the Sprite kernel is
outlined in Section 4, and a description of the bench-
marks is in Section 5. The results are in Section 6,
followed by comments in Section 7 and concluding
remarks in Section 8.

2. Keruel locks

In order for a multi-threaded kemel 1o function
correctly it must contain mechanisms for providing
both mutual exclusion and synchronization between

279

PRECEDING PAGE BLANK NCT FILMED

Performance Measurements...

threads. Other efforts to design multiprocessor
operating systems have used semaphores [2,4,8].
Semaphores are appealing because they can provide
both mutual exclusion and synchronization, eliminat-
ing the need for separate mechanisms. Sprite, how-
ever, uses monitor-style locking and condition vari-
sbles to provide these services. ,

There are two basic types of locks in the Sprite
kemnel: monitor locks and master locks. Monitor
locks are used to implement monitors [9), with
semantics similar to those in Mesa [S). Monitor
locks are acquired at the start of a procedure and
released at the end. If a process tries to lock a mon-
itor lock and another process has it locked already,
then the process is put to sleep. The release of a
monitor lock causes all processes that are waiting on
the lock to be awakened and simultancously try to
reacquire the lock.

The other type of lock in the Sprite kemel is
the master lock. Master locks are used in much the
same manner as monitor Jocks, except that they are
used to to provide mutual exclusion between
processes and interrupt handlers. A master lock is
simply a spin lock that is acquired with interrupts
disabled. If 3 master lock is already in use when an
attempt is made to grab it, then the processor retries
the locking operation until it succeeds. Interrupts
are disabled to prevent a situation where an interrupt
is taken after a master lock has been acquired and
the interrupt routine spins forever waiting for the
lock to be released.

Locks have three different styles of usage in
the Sprite kemnel. These three styles correspond to
different locking granularities. Fine-grained locks
allow s high degree of concurrency, but they
increase the number of locks that a particular thread
must acquire, thereby decreasing its performance.
Coarse-grained locks reduce the amount of con-
currency, but improve the performance of a single
thread. The trick in designing the kemnel is deciding
the placement and granularity of locks.

The coarsest granularity locks in the kernel are
single locks that are used to protect sections of code.
Locks used in this manner are referred to as code
locks. If the lock is & monitor lock then the result-
ing construction is similar to the monitored modules
described in [5]. An example of this style of use is
the monitor lock around the Sprite virtual memory
system. There is 8 single monitor lock that must be
grabbed whenever a routine in the virtual memory
system is called, thus synchronizing access to the
virtus] memory system as a whole.

The remaining two styles of usage are varia-
tions on a theme. They both associate locks with
data rather than with sections of code. For this res-
son they are referred 10 as data locks. Data locks
that use a monitor lock are referred to as monitored
objects in the Mesa paper. One style of usage

280

Hartman, Ousterhout

associates a lock with a data structure. In order to
manipulate the data structure the lock must be held.
A Jock that protects a queuve is an example. The
Sprite file cache has s single lock that protects the
various lists of cache blocks, such as the free list,
dirty list, etc. In order to modify any of these lists
the file cache lock must be held.

The finest granularity locks are associated with
individual data objects. A processor must bold this
lock before modifying the contents of the object.
For example, each block in the Sprite file cache has
8 lock, and that lock must be held when accessing
the contents of the block.

In sddition to ensuring mutual exclusion
between threads, Sprite must also provide a means
for threads to wait for interesting conditions 1o
occur. Condition variables are used for this purpose.
If a process waits on s condition varisble while
bolding a lock it will release the lock and be put to
sleep. At a later time another process will signal the
condition variable, causing all processes waiting on
the variable to awake and try to reacquire the lock.
This signaling mechanism has the same semantics as
Mesa’s broadcast facility.

Major Locks in the Sprite Kernel

ype iption
aster [controls access 10 cond
xt switch code and
queue
andleTableLock Monitor [controls access to table
code) jof all known file han-

dles

vmMonitorLock onitor Jock around all virtual
code) emory functions

lperPCBLock onitor jmust be held whe
data) ing contents of q
control block
pdevLock onitor trols access to indi-
data) id pseudo-dev
les
ExitLock onitor jprovides exclusive
code) to code for des-
ying a process

Ul
in
peper.

Figure 1 is a list of the major locks in
Sprite kernel. There are many other locks in
kernel, such as locks associated with the file system
cache, system timers, and the RPC system, but none
of these have a significant impact on system perfor-
mance.

USENIX - Summer "90

FX]

Mot s dta g # -l

oot

Hartman, Ousterhout

3. The SPUR Hardware

This section outlines some of the features of
the hardware used in the study. Sprite does not
require any special hardware support for ruaning on
8 shared-memory multiprocessor, other than an
stomic test-and-set operation and coherent processor
caches. Details of the hardware are only provided to
allow comparisons to be made 1o more familiar
machines.

At the time of this study the only multiproces-
sor that Sprite supported was the SPUR multiproces-
sor [3). SPUR is s RISC microprocessor developed
at Berkeley as part of a project to study the impact
of adding symbolic processing support and multipro-
cessing to RISC architectures. Individual SPUR pro-
cessor boards can be combined to form s shared-
memory multiprocessor. The machine used in this
study has 32 Mb of shared memory and up to five
processors. Each SPUR processor board has & 128-
kbyte data cache that is kept consistent by hardware,

The SPUR prototype used in this study is not a
particularly fast machine. The processor cycle time
is 140 ns. Duc t0 a design error the on-chip instruc-
tion buffer is mot functional, causing instruction
fetches to require several cycles. As s result, »
SPUR processor can execute about 1.5 native MIPS.
Furthermore, a lack of compiler optimization leads
to inefficient code. We estimate that the resulting
performance is equivalent to about 0.5 VAX MIPS.

4. Instrumentation

Contention for kemnel resources was measured
by collecting information on Jock behavior. We
added fields to each lock 1o record the number of
successful lock acquisitions (referred 1o as hits), and
the number of unsuccessful atiempts to acquire the
lock (misses). For some types of locks, such as the
Jocks associated with process control blocks, the
statistics for an individual Jock aren’t as useful as
those for the type as & whole. For this reason the
individua! Jock counts were consolidated and
secorded on a per-type basis. Recording the infor-
mation on a per-type basis also makes jt casy to han-
dle locks that are created and destroyed dynamically.
The lock counts for these transient Jocks are added
%0 the total for the type when the Jock js destroyed.

The definition of what constitutes a Jock miss
is different for monitor locks and master locks. For
msterlocksthereisatmostonemissperhit. Ifa

8 misses on a Jock it spins until the lock is

» then Jocks it. This sequence is counted as one
miss, followed by a bit. On the other hand, it is
possible for monitor locks to have more misses than
hits. If multiple processes are waiting when s Jock
is released then they will all be awakened and will
atiempt to grab the lock. Only one will succeed and
the rest will go back to sleep. If a process is awak-
ened in this fashion and does not get the lock a miss

USENIX -~ Summer *90

Performance Messurements__

is tecorded. This makes it possible for the numbe;
ofmiscsonanonitorlocktobemtenhnme
sumber of hits.

In addition o instrumenting the locks we also
created new system calls to clear the Jock informa-
tion and to copy the information to user-level.
These two calls were used to reset the Jock informa-
ﬂonaltbebe;hningohmndptherlbeinfor-
mation when it completed.

5. Benchmarks

All of the benchmarks are intended to stress the
operating system. Compute-bound applications were
svoided for that reason. The benchmarks can be
divided into two classes. Realistic workloads are
represented by the macro-benchmarks. These bench.
marks are comprised of real programs that represent
the Sprite development environment. The behavior
of the kerne! while running the macro-benchmarks is
indicative of its behavior under real workloads, and
allows projections 10 be made of maximum syslem
size.

Individual pans of the kernel were stressed by
ruaning a series of micro-benchmarks. For example,
a micro-benchmark may consist of repeated forking
of children, or repeated message passing between
processes. Such repetitive behavior is farely seen in
real programs, but it does allow the behavior of dif-
ferent parts of the kernel to be isolated and meas-
ured.

Macro-benchmarks
Pmakelnd

The pmakelnd benchmark is intended to be
representative of a multi-user environment with mul-
tiple independent compilations taking place. Pmak-
e/nd recompiles Csh from its sources using the

ke program. Pmake is similar 1o the UNIX
“make” utility, except that it runs the compilations in
parallel whenever possible [1). The pmakeind
benchmark runs a separate instance of Pmake on
each processor and each instance uses separate
copies of the sources. This eliminates the Pmake
Program and contention for the source files as causes
of performance degradation. Each instance of
Pmake runs two compilations concurrently, ensuring
that each processor remains highly utilized.

Pmake

The pmake benchmark is also a compilation of
the Csh sources, except that ooly one instancé of
Pmake is run, rather than one per processor. Pmake
attemptstomedloflbeprocessouinthesyﬂemby
running two compilations per processor. The pur-
pose in running this benchmark is to see how well a
single paralle] application can barness the processing
power available in a multiprocessor. Ideally the
application will realize linear speedup as the pumber
of processors is increased. A speedup that is Jess

281

Performance Measurements..

than linear is due 1o cither coatention in the kernel
or lack of concurrency in the application. Since we
are primarily interested in the former effect rather
lhmthehmr,theﬁnﬂlinkofdx&hbinuym
eliminated from the benchmark. This increased the
concurrency inberent in the computation and
increased contention for kernel fesources. -

Troff

The Troff benchmark consists of running the
text formatting program Troff on the man page for
Csh. The resulting output is sent to /dev/null. Each
processor runs s different instance of Troff.

Micro-benchmaris

Twelve micro-benchmarks were run, of which
only six are discussed in this paper. The other six
pertained to stressing the file system, by reading
files, opening files, etc. The results obtained were
not significantly different from the first six and are
therefore omitied in the interest of brevity.

Fork

The fork benchmark consists of a process that
repeatedly forks off a child process using the fork()
system call. The parent waits for the child to die
before forking another child. The child process exits
immediately. This benchmark should stress the pro-
cess creation and destruction components, and the
kernel virtual memory system. The context-switch
code will also be heavily utilized.

Fexec

The fexec benchmark is similar to the Jork
benchmark. A parent process repeatedly forks off
children, waiting for each one to die before forking
the next. The child process uses the exec() routine
10 create another instance of jtself instead of exiting.
This new instance then exits, allowing the parent to
continue. The fexec benchmark should stress the
same components as the fork benchmarks. Any
differences in behavior are due 1o the call to execy).

Mem

Mem is a benchmark that stresses the virtual
memory system. The process repeatedly increases
the size of its heap using the sbrk() system call. The
new heap pages are not touched. Once the
reaches a maximum size it execs itself and starts
over. Mem is targeted at the virtua) memory system,
particularly the component that is responsible for
maintaining process page tables.

Cswitch

The -cswitch benchmark _consists of two
processes that pass a byte back and forth using s
pair of pipes. If this pair of processes is run on a
single processor, then two context swiiches are
required per round trip and the context switch code
should receive heavy utilization. The context
switches can be avoided on a multiprocessor if the

p?.¥]

Hartman, Ousterhout

processes are rus on different processors. In order
loenmthutheeontextwitcbuoccuronepnirof

procme:hmnperpmcmorinthelymm.

Pdeviest stresses the pacudo-device implemen-
tation. Pseudo-devices are like devices except that
they are implemented by user-level server processes
[7). They provide s mechanism for allowing trusted
aewices,md:udisphymnandumrkcom-,
munication protocols, %o be implemented at user-
level rather than in the kemnel. A client process
8ccesses & peseudo-device in the same manner as 3
rea] device. Tbekernelthenforwudslhelequww
the user-leve] server, instead of 10 & kernel device
driver. Pscudo-devices are similar to the UNIX
“pty” mechanism, the only difference being that all
operations on & pseudo-device, such as open, close,
and ioctls, are passed through to the server process.

The pdevtest benchmark creates one pseudo-
device that is written to by multiple clients. Each
client repeatedly writes one byte to the server.

Pdevtestind

This variation on the pdeviest benchmark
creates multiple pseudo-devices. One server and one
client is created for each instance of the benchmark
that is run (i.c for each processor in the system).
The intent is to see if there are any performance
bortlenecks in the pseudo-device implementation that
occur when there is a single server vs. multiple
servers.

€. Results

The results are divided up into sections on
elapsed time for running the benchmarks, calcula-
tions of the incremental throughput for each addi-
tional processor, monitor Jock behavior, and master
lock behavior. These measurements indicate that the
micro-benchmarks suffer bheavily from saturation of
critical resources. The macro-benchmarks also
experience performance degradation, but to a lesser
degree.

Elapsed time

The eclapsed time rmatio for the macro-
benchmuksis:bowninﬁgunz The ratio is cal-
culated by dividing the time it takes a system with n
processors to finish » benchmarks by the time it
takes & uniprocessor to finish one benchmark. For
all bnltlnmahbenchmuktheworkhldhlaled :
with the number of processors, 30 an ideal system
would have s constant ratio of 1.0. The curve for
the pmake benchmark looks different because the
workload is not scaled with the number of proces-
sors. The compilation of the Czh sources always
runs faster with more processors. The ideal elapsed
time ratio for the pmake benchmark is 1/n, where »
is the number of processors in the system. The
measured ratio for the pmake benchmark is very

USENIX - Summer *90

Ratio

Hartman, Ousterhout

close to the ideal, falling behind only when there are
five processors in the system.

Elapsed time ratlo

1.4
1.2

1.0]
v —__pmake
Ratio 0.8

0.61
0.41
0.2

1 2 3 4 S
Processors
Figure 2. A graph of the matio of the multiprocessor
elapsed time to run the macro-benchmarks to the
uniprocessor elapsed time. The workload was scaled
with the system size (except for the pmake bench-
mark), causing the matio for an ideal system o be a
borizonta! line at 1.0. A ratio that is greater than 1.0
indicates that the increase in system throughput is less
than linear. The pmake benchmark bas » fixed work-
load, bence its idea! curve should be 1/n, where » is

the number of processors.

Elapsed time ratio

O

CO==NNWWAALLLOG

Figure 3. nus.magnﬁoammiiﬁ- '
0

cessor elapsed time o run
the uniprocessor ¢ d time. As in Figure 2

sysiemn would have a ratio of 1.0. All of the bench-
maks exhibit an increase in the elapsed time as the
system size increases.

The troff and pmakelnd benchmarks have
elapsed time ratios that are actually better (i.c. less)
than the ideal value of 1.0. This is because there is
8 certain amount of background processing that must
be done that is independent of system size. This
extra work is due (o other processes running on the
system and interrupts. As the number of processors
in the system is increased, the per-processor load

USENIX - Summer "0

Performance Measurements...

induced by background processing is decreased,
allowing each processor 10 allocate more cycles to
the benchmark. While running the oroff and pmat-
elnd benchmarks the slowdown from- keme! conten-
tion was more than offset by the amortization of the
background processing. .

Figure 3 shows the elapsed time ratio for the
micro-benchmarks. Contention causes the elapsed
time of all the benchmarks to increase over the
range of system sizes tested. For two of the bench-
marks the elapsed time initially decreases due 1o
amortization of background processing costs, but this
benefit is eventually outweighed by contention for
kernel resources.

The cswisch benchmark has s worse than linear
slowdown: a system with five processors actually
takes longer o complete the work than a uniproces-
sor should. None of the other benchmarks do this
badly, but neither do they come close to the idea!
ratio. All of the benchmarks show a steady increase
in the elapsed time ratio once there are three proces-
sors in the system. This suggests that the micro-
benchmarks are severely affected by contention for
kernel resources and the system throughput does not
increase significantly if the system is scaled beyond
three processors.

Incremental throughput

per additional processor

2.001

—} m&k:lnd

Mk T S S S
Processors
re 4. Incremental throug sdditional
&r while running the nlah:-mbe:c“hmuks. Mw:-!
the I;od:m‘:rdb yve&:lm‘:eﬂ bzamt incremental
throu L, t system throu !
] ptopomoulw' ':nt:e'dudtkmyﬂ. $hpu

Incremental throughput per sdditional processor

The incremental throughput of an additional
processor is the met amount of work unit time
that the processor adds 1o the system. roughput is
measured in processor wnits, which is the amount of
work per unit time done by a uniprocessor. Incre-
mental throughput is derived by taking the
throughput with n processors in the system, and sub-
tracting the throughput with a - 3 processors. The
result is then normalized to the throughput of a

283

Performance Measurements...

uniprocessor to obtain the incremental throughput in
processor units.

Figure 4 shows the incremental throughput per
processor for the macro-benchmarks. The indepen-
dent compilation of Csh (pmakelnd) and the troff of
the Csh man page (troff) curves both display a gain
of more than one processor unit when the second
processor is added. As mentioned previously, this is
due 10 amortization of background processing. The
troff benchmark does the best of all, maintaining an
incrementa! gain of almost one processor unit even
for the fifth processor.

Incremental throughput
per additional procesor

2.5
2.251
. 2.001

-
~
9

=)

Sbboooommm
BRBRIRBINRYG

Figure 8. The incremental throughput added to the
system by each processor, in processor units. These
measurements were taken while running the micro-
benchmarks. All benchmarks show very little
throughput gained by adding additional

once there arc three processors in the system.

The pmake benchmark shows a gain of more
than one processor unit of throughput for the third
processor, followed by decreasing gains for subse-
quent processors. Some of this effect is probably
due to kernel contention, although the lock miss
ratios aren't high enough to account for all of it.
The rest is probably due to a lack of concurrency in
the Pmake program. This is interesting because it
suggests that although there are five processors in
the system, Pmake cannol make effective use of
them.

The micro-benchmarks all suffer from severe
degradation in elapsed time as the number of proces-
sors is increased, therefore we would expect the
incremental throughput per processor to diminish as
well. This result is seen in Figure S. The
throughput gained by adding additional processors
drops off rapidly so that the third processor does not
add much, if any, -processing power 10 the sysiem.
For a few of the benchmarks the third processor
actually produces negative processor units of
throughput, in effect slowing the sysiem down. At
this point the scheduler lock has become saturated,

284

Hartman, Ousterbout

preventing additional processors from doing anything
useful.

Monitor lock measurements

The graphs of the macro-benchmark monitor
lock miss ratios are shown in Figure 6. The miss
ratio of a lock is the number of misses on that lock
divided by the number of hits. Contention for moni-
tor locks does not appear 10 be a major performance
bottleneck for a system with five or fewer proces-
sors. The maximum miss ratio for any benchmark is
less than 18%. Extrapolation of the curves indicates
that monitor lock contention should not reach satura-
gionlevelsuntiltbesystemismledbyaiworof
three or four,

Moaltor lock miss ratios
Average Highest
40%
35%;
30%
25%
20%1
15%
10%
J/ %
1 2 3 & s "% 3 3 7 3
Processors Processors
= pmake
(vmMonitorLock)
—— troff
(vmMonitorLock)
— pmakelnd
(vmMonitorLock)
Figure § of the monitor Jock miss ratios
while running macro-benchmarks. The on
the miss ratio J across all monitor

The highest monitor lock miss ratio occurs on
the same lock for all the benchmarks. The kemel
has a single monitor lock, vmMonitorLock, that sur-
rounds the entire virtual memory system. Any rou-
tines that modify the virtual memory state must hold
this monitor Jock. When the virtual memory system
was written the emphasis was on cofrectness, rather
than concurrency, hence vmMonitorLock’s monol-
ithic nature. However, the benchmarks suggest that
system performance on large multiprocessors could
be improved by replacing the single vmMonitorLock
with several locks on individual data structures.

The monitor lock miss ratios while running the
micro-benchmarks are shown in Figure 7. Most of
the curves have small slopes and small maximum

USENIX - Summer *90

~t .

———

Hartman, Ousterbout
values. Exceptions are the pdeviessr and cswitch
benchmarks. The causes of the contention

]
g
g,
1

E
3
2
‘
8

multiple clients then this
With more than three clients
the time, causing the miss ratio t0 reach almost two
bundred percent. Each time a process releases the
Jock more than one process is swakened causing

more total misses than hits.
Monltor Jock miss ratios
Average Highest

= gswilch - = mem
(handleTabieLock) (vmMonitorLock)

o fexec = pdeviest
(vmMonitorLock) {perPCBLock)

— == pdevtestind
{gl;lkdﬂck) (pdevLock)

re7. The s ¢ and highest monitor Jock miss
m“os while runnrn?‘the micro-benchmarks. Note that
the vertical scales on the two graphs are mot the same.
Benchmarks whose curves have » slope will not
mle_welllohﬁe‘rsyn_emd?ebummionofl
monitor Jock. initially high values for some
benchmarks on a one processor sysiem are due to all
of the benchmark processes exiting af once, causing a
high miss ratio although the sbsolute sumber of hi
and misses is very low,

The cswitch benchmark uses pipes to pass s
byte between processes. Each time a pipe is
accessed a monitor lock around the file handle table
(handleTableLock) in the kemel is grabbed.
Although different pairs of processes use different
pipes, they all need to grab the handle table monitor
Jock, causing a bottleneck. This is & surprising
result, since the eswitch benchmark was intended to
stress the context switch code. It is not always easy
to predict what effect a particular keme! lock will
have on a benchmark’s performance.

USENIX - Summer *90

Performance Measurements...

Two other Jocks show up in the graph of the
highest monitor Jock miss ratio. ExitLock and
mbock have the highest miss ratio of any monitor

while running the fork and pdevtestnd bench-
marks, respectively. The miss ratios are not high
snough, however, to warrant replacing each of these
locks with multiple locks unless there are many

more processofs in the system.
Master lock miss retios .
Average Righest
100% 100%
0% S0%1
80%1 80%1
0% 0%
0% 60%]
S0%1 L
40% 40%
0% 30%
20% 20%
10% l()i’J
% 3 3 & s % 3 3 &
Processors Processors
—_— 3
(sched_Mutex)
= troff
(sched_Mutex)
— pmakelnd
(sched_Mutex)

Figure 8. Graphs of the master lock miss ratios while
runaning the macro-benchmarks. All of the curves
=::. 8 steep slope due 10 contention for the scheduler

Master lock measurements

The graphs in Figure B are plots of the master
lock miss ratios for the macro-benchmarks. All of
the curves show increasing amounts of contention as
the size of the system is increased. All of this con-
tention is due 10 sched_Mutex, the master Jock
around the scheduler. Sched_Mutex has a higher
miss ratio than any other Jock in the kemnel for
almost all of the benchmarks. This is surprising,
since our first intuition was that various monitor
locks would saturate first. It tums out that
sched_Mutex is used in many different places in the
kernel. Jis main function is 10 provide mutually
exclusive access to the run queue, but it is also used
for other purposes, including synchronization when a
miss occurs on & monitor lock (see Figure 9). Asa
result, an increase in the miss rate for monitor Jocks
will increase the contention for sched_Mutex.

The graphs in Figure 10 are plots of the master
lock miss matio for the micro-benchmarks. The
slopes of the curves are quite steep - all bench-
marks have an average miss ratio on a five processor
system that is between fifty and eighty-five percent.
The highest miss ratio for any lock was greater than

Performance Measurements...

eighty percent for all benchmarks, and in some cases
was higher than ninety percent. Once sgain this
contention is for sched_Mutex. Although the
micro-benchmarks were targeted at an armay of ker-
nel monitor and master locks, they all piled up on
the scheduler lock. Clearly the importance of this
single lock must be reduced.

Miss on monitor lock.
Lock sched_Mutex.
Put process on wait qusus for

monitor lock.
Remove first process from ready guesue.
Context switch to the ready process.
Releass sched_Mutex.

Figure 9. This sequence of events occurs whes a pro-
Cess misses on a monitor Jock. Note that
sched_Mutex is used 10 synchronize access to the
queue of processes waiting for the monitor lock, as
well as the ready queue. This unnecessarily increases
the total length of time that sched_Mutex is beld. The
addition of individual master locks to synchronize
access 1o the wait queue for each monitor lock would
reduce the length of the critical section protected by
sched_Mutex and reduce its utilization.

7. Comments

A running Sprite kemel contains anywhere
from five hundred to a thousand locks. Of these
locks, two repeatedly suffered more contention than
the others. These two locks, sched_Mutex and
vmMonitorLock, account for most of the contention
for kernel locks and represent serious obstacles to
better system performance. Both of these locks are
code locks that protect large regions of the kemel
code. In order to reduce their impact they must be
replaced by several data locks with & finer granular-
ity. It is not necessary to have single locks around
the virtual memory system and the context switch
mechanism. Replacing these locks with data locks
on the various kemmel structures will increase the
concurrency and system performance.

There are a number of factors that cause system
performance to depend heavily on contention for a
few locks. The first is case of design. It is much
simpler to design a system with a few locks than it
is to design one with many locks. Multiple locks
may increase the concurrency, but they also increase
the chance of introducing race conditions and
deadlocks. A single lock should be replaced by mul-
tiple locks only if performance measurements indi-
calc that the single lock is a bottieneck.

The second factor that causes performance-
critical locks is that they develop during the evolu-
tion of the kemel. Race conditions and deadlocks
tend to occur as new features are added to the ker-
nel. When a kernel developer is faced with such an
unwanted side-cffect they typically rewrite their new
feature to hold the most prominent lock they can
find. In this manner prominent locks tend to become
more important, until they are held in many places

286

Hartman, Ousterhout

throughout the keme! for many different reasons.
Such is the case with sched_Mutex. Its influence
grew as the kemnel was modified and synchronization
problems arose.

The underlying cause of both the design and
development problems is the lack of tools. The
graph of lock dependencies in the Sprite kemel is
fairly complex. Tools are necded to belp understand
the synchronization requirements of the various ker-
nel resources and where to place locks to satisfy
those requirements. Once the locks are in place,
tools are needed to measure the performance of the
locks in order to find the performance bottlenecks.
Our measurements of kernel locks in Sprite found
that it is not always obvious which Jocks will be
bottlenecks and why.

Master lock miss ratios
Highest

I

0%
— cswilch = = mem
(handleTableLock) (vmMonitorLock)
= fexec == pdevtest
(vmMonitorLock) (perPCBLock)
- Maand testnd
¥ Lock) BdevLoc

Figure 10. Graphs of the master lock miss ratwo whule
funning the micro-benchmarks. The steep slopes of
the curves are duc 1o a3 beavy contention the mas-
ter lock around the scheduler.

8. Conclusion

The elapsed time and incremental throughput
measurements for the macro-benchmarks indicate
that the Sprite kernel gives acceptable performance
on a machine with up to five processors. All of
these benchmarks showed an almost linear speedup
as the sysiem was scaled, and two of them showed
almost constan! incremental throughput per proces-
sor. The performance degradation of the pmake
benchmark was primarily due lo sequential process-
ing in the application, rather than kernel contention.
This underscores the difficulty of writing a single
application that can make full use of a
multiprocessor’s processing power.

USENIX - Summer "90

Hartman, Ousterbout

Although the macro-benchmarks exhibited suit-
able performance increases for the system sizes that
were measured, the sched_Mutex master Jock
approached saturation. With five processors in the
system its miss ratio was close 10 seventy percent,
indicating that the Jock suffered very beavy conten-
tion. From this it would appear that without elimi-
pation of some of the more important bottlenecks the
kemel will not support more than seven processors
in the system efficiently, except for compute-bound
applications.

Prior to undertaking this study we had assumed
that the kernel monitor locks were the biggest per-
formance bottlenecks. In particular, it was feared
that the single monitor Jock sround the virtual
memory system posed the biggest obstacle to scaling
the number of processors in the system. It came a
surprise that a master Jock, sched_Mutex, was more
beavily utilized than the virtual memory system
Jock. We were also surprised when micro-
benchmarks stressed unintended locks. The behavior
of kernel locks is difficult to predict, even to the
people who designed the system. Clearly there is a
need for tools to belp sysiem developers to better
understand and modify the Jocking structures of mul-
tiprocessor operating systems.

9. Acknowledgements

We would like to thank Ken Lutz for putting
together and maintaining the SPUR prototype, and
Mendel Rosenblum for his efforts in getting both
Sprite and SPUR to run reliably.

10. References

1. A. Boor, PMake - A Tutorial, Unpublished,
June 1, 1988.

2. S. J. Buroff, Multiprocessor UNIX Operating
Systems, ATT Bell Laboratories Technical
Journal 63, 8 (October 1984), 1733-1749.

3. M. D. Hill, S.). Eggers, J. R. Larus, G. S.
Taylor, G. Adams, B. K. Bose, G. A. Gibson,
P. M. Hansen, J. Keller, S. 1. Kong, C. G. Lee,
D. Lee, J. M. Pendleton, S. A. Ritchie, D. A.
Wood, B. G. Zorn, P. N. Hilfinger, D. Hodges,
R. H. Katz, J. Ousterhout and D. A. Patterson,
SPUR: A VLSI Multiprocessor Workstation,
Computer Science Division Technical Report
UCB/Computer Science Dpt. 86/273,
December 1985.

4. Hierarchical Ordering of Sequential Processes.,
in Operating Systems Techniques, 1972, 72-93.

S. B. W. Lampson and D. D. Redell, Experiences
with Processes and Monitors in Mesa., Vol.
23, February, 1980,.

6. J. Ousterhout, A. Cherenson, F. Douglis, M.
Nelson and B. Welch, The Sprite Network
Operating System, JEEE Computer 21, 2 (Feb.

USENIX = Summer *90

Performance Measurements...

1988), 23-36.

7. B. B. Welch and J. K. Ousterhout, Pseudo-
Devices: User-Level Extensions to the Sprite
File System, Proc. of the 1988 Summer
USENIX Conf., June 1988, 184-189.

8. A Strategy for SMP Ultrix, Usenix Conference
Proceedings, June 1988.

9. Monitors: An Operating System Structuring
Coocept, Communications of the ACM 17, 10

(October 1974,), 549-557.

John H. Hartman is s PLD
candidate in the Department
of Electrical Engineering and
Computer Sciences at the
University of California,
Berkeley. He is cumrently a
member of the Sprite network
operating system project. His
interests include operating
systems, high-performance
petworks, and computer architecture. He received
an Sc.B. in computer science from Brown University
in 1987.

John K. Ousterhout is a
Professor in the Department of
Electrical Engineering and
Computer Sciences at the
University of California,
Berkeley. His interests include
operating systems, distributed
sysiems, user interfaces, and
computer-aided design. He is
currently Jeading the
development of Sprite, a
petwork operating system for high-performance
workstations. In the past, he and his students
developed several widely-used programs for
computer-aided design, including Magic, Caesar, and
Crystal. Ousterhout is a recipient of the ACM Grace
Murray Hopper Award, the National Science
Foundation Presidential Young Investigator Award,
the National Academy of Sciences Award for
Initiatives in Research, the IEEE Browder).
Thompson Award, and the UCB Distinguished
Teaching Award. He received a B.S. degree in
Physics from Yale University in 1975 and a Ph.D. in
gomggget Science from Carnegie Mellon University
1980.

Reach both suthors at University of California at
Berkeley; Computer Science Division; Electrical
Engineering and Computer Sciences; University of
California; Berkeley, CA 94720.

